Our Dynamic Universe

Projectiles at an angle

- 1) An archer fires an arrow with a velocity of 60 ms $^{\text{-1}}$ at an angle of 30 $^{\text{o}}$
 - a) Calculate the initial vertical and horizontal components of the arrow's velocity.
 - b) Determine the time it takes for the arrow to reach its maximum height.

- 2) A javelin is thrown with a velocity of 25 ms⁻¹ at an angle of 40°.
 - a) Calculate the initial vertical and horizontal components of the javelin's velocity.
 - b) Determine the time it takes to land.
 - c) Find the horizontal distance the javelin travelled.

- 3) An experimental rocket is launched at an angle of 60° with a velocity of 100 ms⁻¹
 - a) Calculate the vertical & horizontal components of the rocket's velocity.
 - b) Determine the maximum height the rocket reached.
 - c) Calculate the time the rocket was in flight.
 - d) Find the range of the rocket.

- 4) A golfer strikes a golf ball which moves off with a velocity of 60 ms⁻¹ at an angle of 40°.
 - a) Determine the time of flight of the golf ball.
 - b) Find the range of the golf ball.

5) A footballer kicks a ball with a velocity of 20 ms⁻¹ at an angle of 45° from the ground. It strikes a wall 30 m away.

- a) Calculate the horizontal and vertical component of the ball's velocity.
- b) Find the time taken for the ball to strike the wall.
- c) Calculate the height of the ball as it strikes the wall.

6) A girl lobs a ball towards a dish with a velocity of 8 ms⁻¹ at an angle of 60° to the horizontal. The dish is 3 m away on a shelf level with the girl's hand. The ball lands in the dish.

- a) Calculate the horizontal and vertical components of the ball's velocity.
- b) Show that the ball takes 0.75 s to reach the dish.
- c) The ball is released at a height of 1.20 m from the ground. Determine the height of the dish above the ground.

7) A basketball player throws a basketball towards a basket with a velocity of 6.0 ms⁻¹ at an angle of 30° to the horizontal. The basketball player is 2.5 m away from the centre of the basket.

- a) Calculate the horizontal and vertical components of the basketball's velocity.
- b) Show that the basketball reaches the basket in a time of 0.48 s
- c) Determine the height the basketball is above the ground when it reaches the basket.
- d) Show that the basketball's vertical velocity is 1.7 ms⁻¹ downwards when it reaches the basket.
- e) Determine the speed of the ball as it reaches the basket.
- 8) An experimental rocket is launched from a tower at an angle of 60° with a speed of 200 ms⁻¹. It lands 4000 m away from the foot of the tower.
 - a) Find the horizontal component of the rocket's velocity.
 - b) Calculate the time it took the rocket to land.
 - c) Find the height of the tower.
 - d) Determine the vertical velocity of the rocket just prior to landing.
 - e) Find the speed of the rocket just prior to landing.

Answers

m

1 a) vertical = 30 ms⁻¹, horizontal =
$$52 \text{ ms}^{-1}$$
 b) 3.06 s

2 a) vertical =
$$16 \text{ ms}^{-1}$$
, horizontal = 19 ms^{-1} b) 2.6 s c) 56.4 m

3 a) vertical =
$$87 \text{ ms}^{-1}$$
, horizontal = 50 ms^{-1} b) 386 m c) 17.7 s d) 888

4 a) 8 s b) 368 m

7 a) vertical =
$$3 \text{ ms}^{-1}$$
, horizontal = 5.2 ms^{-1} b) 0.48s c) 3.0m e) 5.5 ms^{-1}

8 a) 100 ms⁻¹ b) 40s c) 920 m d) 219 ms⁻¹ e) 279 ms⁻¹