Particles and Waves

Particle Accelerators

1) In the diagrams below use the right or left hand rules to determine the direction of the force experienced by a charged particle in the magnetic field.

2) Which of the following is true about a proton entering into a magnetic field as shown below:

- i) The proton will experience a force to the left and increase its speed
- ii) The proton will increase its speed and experience a force to the right
- iii) The proton will experience a force to the right and not increase its speed.
- A cyclotron is a type of particle accelerator that uses an alternating electric field between two metal D shaped hollow containers which have a magnetic field into the diagram.

- a) Explain why the Ds are connected to an alternating voltage supply.
- b) Sketch the path of a proton as it moves across the gap XY and enters the second D.
- c) Determine the kinetic energy gained by each traverse of the D gap.
- d) The proton makes 3 transitions through the gap. Find the speed of the proton at the end of its third transit.
- e) Explain why the cyclotron is limited in size.

4) Here is the diagram of a linear accelerator.

protons enter here.

- a) Protons enter through electrode A. State the polarity of the electrodes A and B for the proton to move between A and B.
- b) Determine the energy gained by the proton when it is accelerated along the electric field between A and B.
- c) Find the total energy gained by the proton as it leaves electrode D.
- d) Assuming the speed of the proton entering electrode A is zero, determine the speed of the proton as it leaves electrode D.
- 5) A particle of charge Q is accelerated in the electric field between two metal plates as shown.

Show that the velocity of the charged particle when it reaches the other plate is given by

$$v = \sqrt{\frac{2QV}{m}}$$

- 6) Determine the speed gained by a proton when it is accelerated in the electric field between two metal plates which has a potential difference of 3kV. mass of proton = 1.67×10^{-27} kg and it has a charge of size 1.6×10^{-19} C
- 7) A proton of mass 1.67×10^{-27} kg reaches a speed of 6.0×10^6 m s⁻¹ from rest when it passes through an electric field between two metal plates. Determine the size of the potential difference between the metal plates. Charge on proton = 1.6×10^{-19} C.
- 8) An alpha particle of mass 6.64×10^{-27} kg and electric charge 3.2×10^{-19} C enters an electric field between two metal plates through a gap at position A with a speed of 2×10^6 m s⁻¹. The potential difference between the plates A and B is 800 kV.

- a) Find the kinetic energy of the alpha particle as it enters the gap in plate A
- b) Find the energy gained by the alpha particle when it reaches plate B
- c) Find the **total** kinetic energy of the alpha particle at plate B.
- d) A magnetic is brought near the plates such that the magnetic field lines are *into* the diagram. State what direction the alpha particle would now take between the plates.