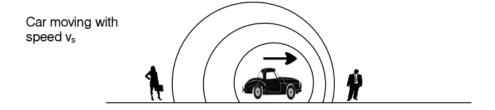
Our Dynamic Universe

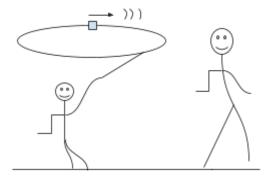


The Doppler Effect for Sound

- 1) A car with a speed of 50 m s⁻¹ is approaching a pedestrian who is standing at the edge of the pavement. The car sounds its horn which has a frequency of 600 hertz.
 - a) Determine the frequency observed by the pedestrian as the car approaches
 - b) Determine the frequency observed by the pedestrian as the car is moving away.

[703 Hz, 523 Hz]

- 2) A jet aircraft travelling at 200 m s⁻¹ approaches a crowd at an airshow. The sound of the aircraft's engines has a frequency of 950 Hz.
 - a) Determine the frequency of engines that the crowd hears when the jet approaches. [2,307 Hz]
 - b) Determine the frequency of the engines when the jet moves away from the crowd at a speed of 200 m s⁻¹. [598 Hz]
- 3) The diagram below shows two pedestrians on a pavement as a car passes them. The diagram shows the sound waves being emitted by the car's engine



- a) Use your knowledge of physics to describe why the man hears the car's engine at a higher frequency than the woman.
- b) The car's engine emits sound at a frequency of 150 Hz and is moving at a speed of 30 m s⁻¹. Determine the observed frequency which

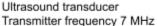
i) the man hears [165 Hz]

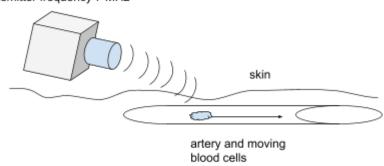
ii) the woman hears [138 Hz]

4) A child swings a buzzer around his head with a speed of 70 m s⁻¹. The buzzer makes a sound of frequency 1000 Hz.

- a) Determine the frequency of buzzer as it approaches the adult.
- b) Calculate the frequency of the buzzer as it moves away from the adult.

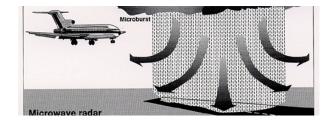
[1,259 Hz , 829 Hz]


- 5) The observed frequency of the sound a jet's engine makes as it moves away from an observer is found to be 1,600 Hz. The actual frequency of sound the jet engine makes is 2000 Hz.
 - Show that the speed of the jet is 85 m s⁻¹.
- 6) A fast moving object makes a sound of frequency 14 kHz. An observer she measures the observed frequency to be 17,000 Hz.
 - a) Determine whether the object is moving towards or away from the observer.
 - b) Show that the speed of the object is 60 m s⁻¹
- 7) A siren on an ambulance emits a sound of 3,700 hertz. A nearby physicist measures the frequency to be 3,400 hertz.
 - a) Determine if the ambulance is approaching or moving away from the physicist.
 - b) Show that the speed of the ambulance is 30 m s⁻¹
- 8) A fast moving object emits a sound of a certain frequency. Determine the speed the object must approach an observer for her to hear the sound with double the frequency. [170 m/s]


9) A policeman aims radar gun at a car travelling at 22 m s⁻¹ towards him. The radar gun emits ultrasound of frequency 25,000 Hz. Ultrasound travels at 340 m s⁻¹.

Determine the frequency of the reflected ultrasound.

[26730 Hz]


10) The doppler effect can be used in medicine to calculate the speed of blood flowing in a patient's arteries.

- a) Copy and complete this sentence choosing the correct word.

 The transducer is a device that transmits ultrasound. The ultrasound waves reflect off the moving blood cells. The frequency of the reflected ultrasound will be less / more than the transmitted frequency. This frequency decrease/increase is used to calculate the speed of the blood cells.
- b) The speed of the blood cells is found to be 30 cm s⁻¹. Determine the frequency of the reflected ultrasound.
- 11) Aircraft are prone to danger when they encounter heavy rain showers that create wind shear. This is when there is a burst of downward wind which strikes the ground suddenly changes the wind speed.

- a) Explain how by transmitting microwaves into the downpour the pilot can find the wind speed of the downpour.
- b) The transmitted frequency of the microwaves is 1.5 x 10¹⁰ Hz and the reflected frequency is 1.50000025 x 10¹⁰ Hz.
 Calculate the speed of the wind coming from the downpour. [50 m s⁻¹]