Our Dynamic Universe

1) An astrophysicist measures the Calcium Potassium absorption spectral line's wavelength to be 3934×10^{-10} m in the laboratory.

The light from a star in a galaxy gives the same absorption line a wavelength of 3965×10^{-10} m

- a) State whether the galaxy is moving towards or away from the Earth.
- b) Calculate the redshift ratio for this galaxy

[0.00788]

c) Determine the speed of the galaxy.

 $[2.364 \times 10^6 \text{ m s}^{-1}]$

- 2) In the laboratory the wavelength of an absorption line in the spectra is 393.4 nm. When the same absorption line is viewed from light coming from a distant galaxy the wavelength is 394.0 nm.
 - a) State whether the galaxy is moving away or approaching the Earth.
 - b) Calculate the redshift ratio for this galaxy.

[0.00153]

c) Determine the speed of the galaxy

[459,000 m s⁻¹]

3) An astrophysicist measures the absorption line spectra wavelength for a hydrogen gas and compares it to the same line from the light of a distant galaxy. The computer print out is shown below.

- a) State what is meant by the spectral lines being redshifted.
- b) Calculate the redshift ratio for this galaxy.

[0.00529]

c) Determine the speed of this galaxy.

 $[1.587 \times 10^6 \text{ m s}^{-1}]$

4) An astrophysicist compares the spectral lines measured in the laboratory to those measured on a distant galaxy`s star..

- a) Calculate the redshift ratio for the star. [0.017]
- b) Determine the speed the galaxy is moving away from us. [5.1 x 10⁶ ms⁻¹]
- 5) An astrophysicist takes a measurement of the spectral lines from a calcium -K source in the laboratory. Measurements are made of the calcium K lines on a distant galaxy which is measured to have a recessional velocity of 20.0 x 10³ m s⁻¹.

a) Determine the redshift of this star.

 $[66.7 \times 10^{-6}]$

b) Calculate the observed wavelength of the calcium - K line on the star. [4120.27 angstroms]