Particles and Waves

1) A uranium - 235 nucleus undergoes induced fission. The equation for the reaction is shown below:

$$^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{140}_{58}Ce + ^{94}_{40}Zr + 2^{1}_{0}n + 6^{0}_{-1}e$$

The total mass of the particles on the LHS is $391.848 \times 10^{-27} \text{ kg}$ and the total mass of the particles on the RHS is $391.476 \times 10^{-27} \text{ kg}$.

- a) Determine the mass defect.
- b) Calculate the energy released in this nuclear reaction.
- 2) A nuclear reaction is represented by the equation below:

$$^{240}_{94}Pu \longrightarrow ^{236}_{92}U + ^{4}_{2}He$$

- a) Pu has a mass of 398.626×10^{-27} kg. The total mass of the particles on the RHS of the nuclear equation is 398.615×10^{-27} kg Determine the mass defect.
- b) Calculate the energy released in this nuclear reaction.
- c) How many of the above reactions would have to take place each second to produce a power of 1kW.
- 3) A nuclear reaction is represented below:

$$_{1}^{2}H + _{1}^{2}H \longrightarrow _{1}^{3}H + _{1}^{1}H$$

- a) State the type of nuclear reaction shown above.
- b) The mass of the nuclei on the LHS amounts to 6.689 x 10⁻²⁷kg and the mass of the nuclei on the RHS amounts to 6.682 x 10⁻²⁷kg. Determine the mass defect and calculate the energy released in the nuclear reaction.

4) A nuclear reaction is shown below:

$$^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{140}_{54}Xe + ^{94}_{q}Sr + 2^{1}_{0}n$$

- a) Determine the value of q
- b) Physicists use the value of the atomic mass unit (amu) to stand for nuclear masses. 1 amu = 1.660 539 x 10⁻²⁷ kg.
 Use the table below to determine the mass defect of the above nuclear reaction. The numbers represent the masses of the nuclei in amu.

$$^{235}_{92}U$$
 $^{1}_{0}n$ $^{140}_{54}Xe$ $^{94}_{q}Sr$ $^{1}_{0}n$ 235.043 923 1.008 665 139.921 647 93.915 361 1.008 665

- c) Calculate the energy released by this nuclear reaction.
- d) Determine the number of the above reactions that must take place each second to provide a power of 800 MW
- 5) Which of the following statements correctly describes nuclear fission
 - Two nuclei combine to form a large nucleus releasing several neutrons
 - ii) A large nucleus splits into two smaller nuclei releasing three electrons
 - iii) A large nucleus splits into two smaller nuclei releasing several protons
 - iv) A large nucleus splits into two smaller nuclei releasing several neutrons.
- 6) The nuclear reaction represented below gives off 9.9 x 10^{-13} J. Determine the total mass of the product nuclei given that the mass of the Pu 240 is 398.626×10^{-27} kg

$$\stackrel{240}{94}Pu \longrightarrow \stackrel{236}{92}U + \stackrel{4}{2}He$$

Answers and solutions.

- 1) a) mass defect = $0.372 \times 10^{-27} \text{ kg}$
 - b) Energy = $3.348 \times 10^{-11} \text{ J}$
- 2) a) mass defect = $1.1 \times 10^{-29} \text{ kg}$
 - b) Energy = $9.9 \times 10^{-13} \text{ J}$
 - c) 1.01×10^{15} reactions per second.
- 3) a) Fusion reaction
 - b) mass defect = $7.0 \times 10^{-30} \text{ kg}$ Energy = $6.3 \times 10^{-13} \text{ J}$
- 4) a) q = 38
 - b) mass defect = $3.29 \times 10^{-28} \text{ kg}$
 - c) Energy = $2.96 \times 10^{-11} \text{ J}$
 - d) 2.7 x 10¹⁹ reactions per second
- 5) Statement iv is correct
- 6) Total mass of products = $3.98615 \times 10^{-25} \text{ kg}$