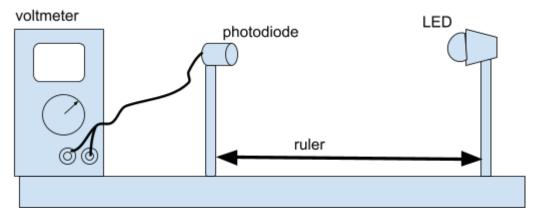

Particles and Waves

The inverse Square Law

 A physics student set up the following experiment in a dark room. A small light source considered to be a point source of light was slid along a ruler. A voltmeter attached to a photodiode gives voltage readings which are directly proportional to the irradiance from the light source.

The student collected the following data.


Distance from light source / cm	20	40	60	80	100
Voltage / V	250	62.5	28.0	15.7	10.0

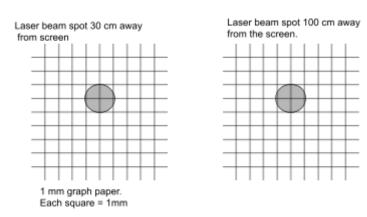
Use all the data in the table to find a relationship between the distance d from the light source and the voltage V.

2) In the following practice problems use the inverse square law to determine the quantity asked for.

a) The irradiance at a distance of 40.0 cm from a point source of light is 50 Wm ⁻² Calculate the irradiance at a distance of 80.0 cm from the point source of light. [12.5 Wm ⁻²]	b) The irradiance at a distance of 12.0 cm from a point source of light is measured to be 256 Wm ⁻² . Calculate the irradiance at a distance of 3.0 cm away from the point source of light. [4 096 Wm ⁻²]
c) The irradiance from a point source of light is found to be 90 Wm ⁻² at a distance of 30 cm from the light source. Calculate the distance from the light source that gives an irradiance of 22.5 Wm ⁻² [60 cm]	d) The irradiance from a point source of light is 64 Wm ⁻² at a distance of 36 cm. Calculate the distance from the light source that gives an irradiance of 256 Wm ⁻² [18 cm]

3) An experiment is set up to determine the relationship between the irradiance and distance from an LED.

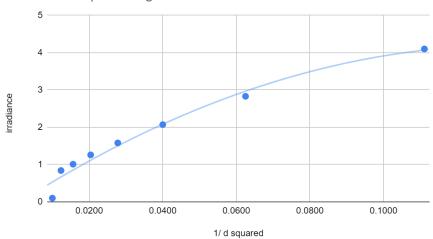
A student took the following readings. The irradiance is directly proportional to the reading on the voltmeter.


distance/ cm	3	4	5	6	7	8	9	10
irradiance/ units of volts	4.10	2.83	2.07	1.58	1.26	1.01	0.84	0.10

Use the above data to plot a graph of 1/d² against the irradiance.

Explain why the student concludes that the LED is not a point source of light.

4) An experiment was carried out to determine how the irradiance of a laser beam changed over distance.


The beam of the laser was directed towards a screen. When the laser was moved further away the diameter of the beam spot did not change.

- a) Explain why the irradiance of the laser beam remains constant.
- b) The irradiance is measured to be 1,600 Wm⁻² Determine then power of the laser.

3) The chart obtained from the data

It is not showing that $I \propto 1/d^2$ So is not a point source of light

4) The laser has a power of 5 mW.