Our Dynamic Universe

1) The Sun has a mass of 2 x 10^{30} kg, determine the gravitational force between the Sun and these planets. [$G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$]

Planet	Mass of Planet	Distance from the Sun
Mercury	3.3 X 10 ²³ kg	5.8 X 10 ⁷ km
Venus	5.0 X 10 ²⁴ kg	1.1 X 10 ⁸ km
Mars	6.4 X 10 ²³ kg	2.3 X 10 ⁸ km

2) The asteroid called Ceres was discovered in 1801. It has a mass of 9.5 X 10²⁰ kg. It orbits the Sun at a distance of approximately 4 X 10¹¹ m. It takes around 5 years to orbit the Sun.

Calculate the gravitational force of attraction between the Sun and Ceres.

- 3) Rearrange the Gravitational force of attraction equation to determine the units of G, the universal gravitational constant.
- 4) Copy these diagrams showing the gravitational field lines around the Earth and when viewed nearer the surface.

5) Show that on the Earth's surface the gravitational field strength g is given by the

formula
$$g = \frac{GM}{r^2}$$

Find the value of M, the mass of the Earth if $g = 9.8 \text{ N kg}^{-1}$, the radius of the Earth is 6,400 km and the universal gravitational constant is 6.67 X $10^{-11} \text{ Nm}^2 \text{kg}^{-2}$

- 6) Two men are standing close to each other having a conversation.

 Using your knowledge of physics, estimate the gravitational force of attraction between the two men.
- 7) The equation of the force of gravitational attraction is given below.

$$F = G \frac{Mm}{r^2}$$

- a) Name the constant G and write down its units.
- b) State what happens to the force between two masses when the distance between them is
 - i) doubled
 - ii) halved
- 8) A 5 kg bowling ball is sat on the floor a distance of 2 metres away from a 2 g marble.
 - a) Determine the force of gravitational attraction between the bowling ball and the marble.
 - b) State the size of the gravitational force of attraction between the marble and bowling ball.
 - c) Explain why you do not see the marble accelerating towards the bowling ball.
- 9) A 200 kg satellite orbits the Earth at a distance of 36,000 km above the Earth's surface. The Earth has a mass of 6.0 X 10²⁴ kg and has a radius of 6,000 km.
 - a) Calculate the gravitational force of attraction the Earth has on the satellite.
 - b) Explain why the satellite orbits around the earth without falling to the surface.
- 10) In deep space two protons of mass 1.67×10^{-27} kg are separated by a distance of 3 femtometre. (1 femtometre = 1×10^{-15} m) Calculate the gravitational force of attraction between the two protons.

Answers to Gravitation

- 1 Mercury F = 1.31 X 10^{22} N, Venus F = 5.51 x 10^{22} N, Mars F = 1.61 x 10^{21} N
- 2 7.92 x 10¹⁷ N
- 8 a) $1.67 \times 10^{-13} \text{ N}$ b) the same
- 9 a) 45 N b) 53,000 km
- 10 2.1 x 10⁻³⁵ N