1) A test vehicle starts from rest and its acceleration graph is obtained.

a) Find the velocity of the test vehicle after 2 s .
[$10 \mathrm{~m} \mathrm{~s}^{-1}$]
b) Determine the final velocity of the test vehicle
[$18 \mathrm{~m} \mathrm{~s}^{-1}$]
c) Sketch a velocity time graph of its motion.
2) A graph of the acceleration of an object is obtained and displayed below.

The object's initial velocity is $2 \mathrm{~m} \mathrm{~s}^{-1}$
a) Determine the object's velocity at 6 s .
[$6 \mathrm{~m} \mathrm{~s}^{-1}$]
b) Sketch the corresponding velocity time graph of the motion.
3) The acceleration graph of a moving object starting from rest is shown.

a) Determine the velocity of the object after 3 seconds.
b) Determine the velocity of the object at 5 s .
c) If the velocity at 5 s was supposed to be $20 \mathrm{~m} \mathrm{~s}^{-1}$ sketch the acceleration graph that would give this final velocity assuming the acceleration is the same during the first three seconds.
4) An acceleration graph is produced for a moving object which starts from rest.

a) Sketch a velocity time graph of the motion and determine the object's displacement from its starting point.
b) Redraw the object's acceleration graph above with an added acceleration between 4 and 6 s which will bring it back to rest.

