1) A 50 kg skateboarder starts from rest 10 m high up a ramp. He then rides down the ramp as shown.

a) Calculate the potential energy of the skateboarder at the top.
b) Assuming the frictional force of the track is 20 N and the length travelled to position $X$ is 8 m , then find the work done against friction.
c) Determine the skateboarder's kinetic energy at position $X$.
d) Calculate the speed of the skateboarder at position $X$.

$$
\text { [a) 4,900 J, b) } 160 \mathrm{~J}, \text { c) } 4,740 \mathrm{~J} \text {, d) } 13.8 \mathrm{~ms}^{-1} \text { ] }
$$

2) A 50 kg skateboarder reaches a speed of $6 \mathrm{~ms}^{-1}$ at point $X$. The frictional force of the ramp is 10 N and the skateboarder travels a distance of 8 m on the ramp.

a) Calculate the kinetic energy of the skateboarder at position $X$.
b) Find the work done against friction by the skateboarder
c) Determine the vertical height reached up the ramp by the skateboarder.

$$
\text { [a) } 900 \mathrm{~J}, \text { b) } 80 \mathrm{~J}, ~ c) ~ 1.7 \mathrm{~m} \text { ] }
$$

3) A pendulum of mass 0.5 kg is lifted up to a height of 0.5 m and let go. The pendulum reaches to a height of 0.4 m at the other side.

a) Calculate the potential energy of the pendulum at position $X$
b) When the pendulum reaches point $Z$ determine the energy lost overcoming friction.
4) A car of mass 2000 kg travelling at $13 \mathrm{~ms}^{-1}$ brakes and comes to a stop in a distance of $23 \mathrm{~m}, 9 \mathrm{~m}$ are actual 'thinking distance' the remaining distance is the stopping distance caused by the total braking force acting on the car.

23 m

a) Find the kinetic energy of the car during the thinking distance
b) Determine the breaking force of the car.
5) A 2 kg metal ball falls from a height of 5 m . Assuming that there is no air resistance;
a) Calculate the potential energy of the ball when it is 5 m high. [98 J]
b) State the kinetic energy of the ball just before it lands.
c) Using conservation of energy determine the speed of the ball just before it strikes the ground.
[9.9 ms ${ }^{-1}$ ]
6) A 200 kg experimental rocket traveling at $60 \mathrm{~ms}^{-1}$ is brought to a halt on a section of track of length 20 metres.

a) Calculate the work done by the frictional force of the track to bring the rocket to a stop.
b) State the energy transfer that has taken place.
7) A small rocket, mass 100 kg , is launched with a velocity of $25 \mathrm{~ms}^{-1}$. It is calculated that the work done by the rocket overcoming the frictional force of the air is 19,490 J .
a) Calculate the kinetic energy of the rocket at launch.
[31,250J]
b) Using conservation of energy determine the height the rocket reached. [12 m ]
8) A 2000 kg car travelling at $18 \mathrm{~ms}^{-1}$ is brought to a stop in a distance of 0.5 m .
a) Calculate the kinetic energy of the car before it stops.
b) Determine using conservation of energy the average stopping force from the wall.


